The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain.
View Article and Find Full Text PDFBackground: Diabetes is a multi-factorial disorder and related complications constitute one of the principal causes of global mortality and disability. The role of ferroptosis in diabetes and its complications is intricate and significant. This study endeavors to disclose the role of ferroptosis in the aforementioned diseases from multiple perspectives through multi-omics.
View Article and Find Full Text PDFStructural variation (SV) is an important component of the diversity of the human genome. Many studies have shown that SV has a significant impact on human disease and is strongly associated with the development of cancer. In recent years, the Hi-C sequencing technique has been shown to be useful for detecting large-scale SVs, and several methods have been proposed for identifying SVs from Hi-C data.
View Article and Find Full Text PDFIntroduction: Sepsis-induced acute lung injury (ALI), a critical sequela of systemic inflammation, often progresses to acute respiratory distress syndrome, conferring high mortality. Although UMI-77 has demonstrated efficacy in mitigating lung injury in sepsis, the molecular mechanisms underlying its action have not yet been fully elucidated.
Methods: This study aimed to delineate the mechanism by which UMI-77 counteracts sepsis-induced ALI using comprehensive transcriptomic and metabolomic analyses.
This study investigated the effectiveness of cysteine in improving the functional properties of pea proteins within low-salt myofibrillar protein (MP) gels. Cysteine treatment, at a concentration of 3.3 mM/g protein, cleaved 71-82 % of the disulfide bonds in native and pH-shifted pea protein isolates (PPI and PPI), which increased the solubility and hydrophobicity of PPI.
View Article and Find Full Text PDF