TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) is the neuronal regulatory subunit of HCN channels, a family of voltage-dependent cation channels also modulated by direct cAMP binding. TRIP8b interacts with the C-terminal region of HCN channels and controls both channel trafficking and gating. The association of HCN channels with TRIP8b is required for the correct expression and subcellular targeting of the channel protein in vivo.
View Article and Find Full Text PDFBinding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8b) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current I in rabbit and mouse sinoatrial node cardiomyocytes.
View Article and Find Full Text PDFDespite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.
View Article and Find Full Text PDFcAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD.
View Article and Find Full Text PDFChromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines.
View Article and Find Full Text PDF