The Plasmodium falciparum cytoplasmic tyrosine tRNA synthetase (PfTyrRS) is an attractive drug target that is susceptible to reaction-hijacking by AMP-mimicking nucleoside sulfamates. We previously identified an exemplar pyrazolopyrimidine ribose sulfamate, ML901, as a potent reaction hijacking inhibitor of PfTyrRS. Here we examined the stage specificity of action of ML901, showing very good activity against the schizont stage, but lower trophozoite stage activity.
View Article and Find Full Text PDFMalaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold.
View Article and Find Full Text PDFMalaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold.
View Article and Find Full Text PDFCurrent best practice for the treatment of malaria relies on short half-life artemisinins that are failing against emerging Kelch 13 mutant parasite strains. Here, we introduce a liposome-like self-assembly of a dimeric artesunate glycerophosphocholine conjugate (dAPC-S) as an amphiphilic prodrug for the short-lived antimalarial drug, dihydroartemisinin (DHA), with enhanced killing of Kelch 13 mutant artemisinin-resistant parasites. Cryo-electron microscopy (cryoEM) images and the dynamic light scattering (DLS) technique show that dAPC-S typically exhibits a multilamellar liposomal structure with a size distribution similar to that of the liposomes generated using thin-film dispersion (dAPC-L).
View Article and Find Full Text PDFArtesunate (ARS) is the only artemisinin-based intravenous drug approved for treatment of malaria in the clinic. ARS is rapidly metabolized in vivo to short lived (∼30-45 min) but fast acting, dihydroartemisinin (DHA). The short half-life of DHA necessitates multiple dose administration to circumvent the risk of recrudescence and development of artemisinin resistance.
View Article and Find Full Text PDF