Aims/hypothesis: Gestational diabetes mellitus (GDM) affects 14% of all pregnancies worldwide and is associated with cardiometabolic risk. We aimed to exploit high-resolution wearable device time-series data to create a fine-grained physiological characterisation of the postpartum GDM state in free-living conditions, including clinical variables, daily glucose dynamics, food and drink consumption, physical activity, sleep patterns and heart rate.
Methods: In a prospective observational study, we employed continuous glucose monitors (CGMs), a smartphone food diary, triaxial accelerometers and heart rate and heart rate variability monitors over a 2 week period to compare women who had GDM in the previous pregnancy (GDM group) and women who had a pregnancy with normal glucose metabolism (non-GDM group) at 1-2 months after delivery (baseline) and 6 months later (follow-up).
Besides its beneficial effect on weight loss, gastric bypass surgery (GBS) may impact the circulating levels of phospho- and sphingolipids. However, long-term effects have not been explored. To investigate alterations in lipidomic signatures associated with massive weight loss following GBS, we conducted direct infusion tandem mass spectrometry on serum and subcutaneous adipose tissue (SAT) samples collected in a longitudinal cohort of morbid obese patients prior to GBS and 1 year following the surgery.
View Article and Find Full Text PDFThe field of chronobiology has advanced significantly since ancient observations of natural rhythms. The intricate molecular architecture of circadian clocks, their hierarchical organization within the mammalian body, and their pivotal roles in organ physiology highlight the complexity and significance of these internal timekeeping mechanisms. In humans, circadian phenotypes exhibit considerable variability among individuals and throughout the individual's lifespan.
View Article and Find Full Text PDFThe quality and quantity of tumor-infiltrating lymphocytes, particularly CD8 T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day.
View Article and Find Full Text PDF