Publications by authors named "C Detlefs"

Article Synopsis
  • Dark-field X-ray microscopy (DFXM) is a non-destructive imaging technique that allows for 3D mapping of structures and local strain in crystal elements.
  • It involves using an objective lens to enhance the imaging of local diffraction, particularly useful for studying dislocations within materials.
  • The study focuses on optimizing DFXM setups, utilizing simulations to explore contrast methods and the feasibility of observing dislocations based on their proximity and spatial resolution.
View Article and Find Full Text PDF

Dark-field X-ray microscopy (DFXM) is a high-resolution, X-ray-based diffraction microstructure imaging technique that uses an objective lens aligned with the diffracted beam to magnify a single Bragg reflection. DFXM can be used to spatially resolve local variations in elastic strain and orientation inside embedded crystals with high spatial (~ 60 nm) and angular (~ 0.001°) resolution.

View Article and Find Full Text PDF
Article Synopsis
  • This work presents dark-field X-ray microscopy (DFXM) as a powerful 3D imaging technique for analyzing novel gallium nitride (GaN) structures on nano-pillars designed for optoelectronic devices.
  • The GaN layers are expected to bond cohesively into a well-oriented film due to the softening of the SiO layer during growth, with DFXM achieving extremely precise orientation (standard deviation of 0.04°) for GaN nanostructures.
  • The findings from both nanoscale DFXM and macro-scale X-ray diffraction confirm that the coalescing GaN layers cause intentional misorientation in the silicon nano-pillars, highlighting the technique's potential for developing high-quality GaN
View Article and Find Full Text PDF

A Python package for the analysis of dark-field X-ray microscopy (DFXM) and rocking curve imaging (RCI) data is presented. DFXM is a non-destructive diffraction imaging technique that provides three-dimensional maps of lattice strain and orientation. The darfix package enables fast processing and visualization of these data, providing the user with the essential tools to extract information from the acquired images in a fast and intuitive manner.

View Article and Find Full Text PDF

Thermomechanical processing such as annealing is one of the main methods to tailor the mechanical properties of materials, however, much is unknown about the reorganization of dislocation structures deep inside macroscopic crystals that give rise to those changes. Here, we demonstrate the self-organization of dislocation structures upon high-temperature annealing in a mm-sized single crystal of aluminum. We map a large embedded 3D volume ([Formula: see text] [Formula: see text]m[Formula: see text]) of dislocation structures using dark field X-ray microscopy (DFXM), a diffraction-based imaging technique.

View Article and Find Full Text PDF