Atypical beta-adrenergic receptors (beta AR), different from beta 1 and beta 2ARs, have been suggested to modulate energy expenditure. We have characterized a gene coding for a third human beta AR, beta 3AR, whose sequence is 402 amino acids long and is 50.7% and 45.
View Article and Find Full Text PDFThe genes coding for three pharmacologically distinct subtypes of human beta-adrenergic receptors (beta 1 AR, beta 2 AR and beta 3 AR) were transfected for expression in Chinese hamster ovary (CHO) cells. Stable cell lines expressing each receptor were analyzed by ligand binding, adenylate cyclase activation and photoaffinity labeling, and compared to beta AR subtypes observed in previously described tissues, primary cultures and transfected cell lines. Each of the three receptor subtypes displayed saturable [125I]iodocyanopindolol-binding activity.
View Article and Find Full Text PDFThe molecular basis of ligand binding selectivity to beta-adrenergic receptor subtypes was investigated by designing chimeric beta 1/beta 2-adrenergic receptors. These molecules consisted of a set of reciprocal constructions, obtained by the exchange between the wild-type receptor genes of one to three unmodified transmembrane regions, together with their extracellular flanking regions. Eight different chimeras were expressed in Escherichia coli and studied with selective beta-adrenergic ligands.
View Article and Find Full Text PDFAfter fusion with the N-proximal portion of the outer membrane protein LamB, three beta-adrenergic receptors, the human beta 1- and beta 2- and turkey beta 1-adrenergic receptor, were expressed in Escherichia coli with retention of their own specific pharmacological properties. Molecular characterization and localization of the three receptors in bacteria and comparison of the behaviour of each hybrid protein are reported. The bacteria were lysed and fractionated on a sucrose gradient.
View Article and Find Full Text PDF