Background: Unlike expired sevoflurane concentration, propofol lacks a biomarker for its brain effect site concentration, leading to dosing imprecision particularly in infants. Electroencephalography monitoring can serve as a biomarker for propofol effect site concentration, yet proprietary electroencephalography indices are not validated in infants. The authors evaluated spectral edge frequency (SEF95) as a propofol anesthesia biomarker in infants.
View Article and Find Full Text PDFBackground: Propofol-based total intravenous anesthesia is gaining popularity in pediatric anesthesia. Electroencephalogram can be used to guide propofol dosing to the individual patient to mitigate against overdosing and adverse events. However, electroencephalogram interpretation and propofol pharmacokinetics are not sufficiently taught in training programs to confidently deploy electroencephalogram-guided total intravenous anesthesia.
View Article and Find Full Text PDFElectroencephalogram (EEG) can be used to assess depth of consciousness, but interpreting EEG can be challenging, especially in neonates whose EEG undergo rapid changes during the perinatal course. EEG can be processed into quantitative EEG (QEEG), but limited data exist on the range of QEEG for normal term neonates during wakefulness and sleep, baseline information that would be useful to determine changes during sedation or anesthesia. We aimed to determine the range of QEEG in neonates during awake, active sleep and quiet sleep states, and identified the ones best at discriminating between the three states.
View Article and Find Full Text PDFWhy are only some occasions of system 1 to system 2 switching affectively loaded? This commentary not only draws attention to this neglected phenomenon, but also shows how research in philosophy and the social and cognitive sciences sheds light on it, doing so in ways that may help answer some of the open questions that De Neys's paper highlights.
View Article and Find Full Text PDF