Publications by authors named "C DeTar"

All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to a_{μ}^{HVP} for the first time with physical values of m_{u} and m_{d} and dynamical u, d, s, and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δa_{μ}^{HVP,m_{u}≠m_{d}}=+1.

View Article and Find Full Text PDF

We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry.

View Article and Find Full Text PDF

The rare decay B→πℓ^{+}ℓ^{-} arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor f_{T}. Together with the vector and scalar form factors f_{+} and f_{0} from our companion work [J.

View Article and Find Full Text PDF

We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit.

View Article and Find Full Text PDF

Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field for the first time. The coefficients of the expansion are computed to second order in the magnetic field.

View Article and Find Full Text PDF