Publications by authors named "C De Marchis"

Donor-derived cell-free DNA (dd-cfDNA) is an emerging non-invasive biomarker for allograft injury detection. This study aimed to evaluate a new, decentralized dd-cfDNA testing kit against a centralized dd-cfDNA testing service broadly utilized in the United States. Kidney transplant recipients with decentralized and centralized dd-cfDNA measurements and concomitant kidney allograft biopsies were included in the study.

View Article and Find Full Text PDF

The knee is one of the joints most vulnerable to disease and injury, particularly in athletes and older adults. Surface temperature monitoring provides insights into the health of the analysed area, supporting early diagnosis and monitoring of conditions such as osteoarthritis and tendon injuries. This study presents an innovative approach that combines infrared thermography techniques with a Resnet 152 (DeepLabCut based) to detect and monitor temperature variations across specific knee regions during repeated sit-to-stand exercises.

View Article and Find Full Text PDF

The characterization, through the concept of muscle synergies, of clinical functional tests is a valid tool that has been widely adopted in the research field. While this theory has been exploited for a description of the motor control strategies underlying the biomechanical task, the biomechanical correlate of the synergistic activity is yet to be fully described. In this paper, the relationship between the activity of different synergies and the center of mass kinematic patterns has been investigated; in particular, a group of healthy subjects has been recruited to perform simple sit-to-stand tasks, and the electromyographic data has been recorded for the extraction of muscle synergies.

View Article and Find Full Text PDF

This narrative review provides a comprehensive analysis of the several methods and technologies employed to measure handgrip strength (HGS), a significant indicator of neuromuscular strength and overall health. The document evaluates a range of devices, from traditional dynamometers to innovative sensor-based systems, and assesses their effectiveness and application in different demographic groups. Special attention is given to the methodological aspects of HGS estimation, including the influence of device design and measurement protocols.

View Article and Find Full Text PDF

According to the modular hypothesis for the control of movement, muscles are recruited in synergies, which capture muscle coordination in space, time, or both. In the last two decades, muscle synergy analysis has become a well-established framework in the motor control field and for the characterization of motor impairments in neurological patients. Altered modular control during a locomotion task has been often proposed as a potential quantitative metric for characterizing pathological conditions.

View Article and Find Full Text PDF