Publications by authors named "C De Lellis Laterza"

The premutation of the fragile X messenger ribonucleoprotein 1 () gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death.

View Article and Find Full Text PDF

Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment.

View Article and Find Full Text PDF

The generation of induced pluripotent stem cells (iPSCs) via somatic cell reprogramming allowed to have an unlimited in vitro source of patient-specific cells. This achievement has introduced a new revolutionary way to create human in vitro models and to study human diseases starting from patient's own cells, especially important for inaccessible tissues like the brain. Recently, lab-on-a-chip technology has opened new reliable alternatives to conventional in vitro models able to replicate key aspects of human physiology, thanks to the intrinsic high surface-area-to-volume ratio, which allows fine control of the cellular microenvironment.

View Article and Find Full Text PDF

The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization.

View Article and Find Full Text PDF