Publications by authors named "C Datler"

IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene.

View Article and Find Full Text PDF

Massive Ca(2+) influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca(2+) influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca(2+)-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca(2+) binding.

View Article and Find Full Text PDF

The permeability transition pore (PT-pore) mediates cell death through the dissipation of the mitochondrial membrane potential (ΔΨm). Because the exact composition of the PT-pore is controversial, it is crucial to investigate the actual molecular constituents and regulators of this complex. We found that mitochondrial creatine kinase-1 (CKMT1) is a universal and functionally necessary gatekeeper of the PT-pore, as its depletion induces mitochondrial depolarization and apoptotic cell death.

View Article and Find Full Text PDF

RNA interference (RNAi) is an essential method in molecular biology to reduce the expression of target genes and thereby determine their function. Since this tool is known to also have unspecific effects, control experiments are needed, chiefly among them the exclusion of off-target effects and the reconstitution of the genes' expression for the rescue of the cellular RNAi effects. We show here that the knock-down of the mitochondrial creatine kinase-1 (CKMT1) by RNA interference causes the dissipation of the mitochondrial membrane potential ΔΨm.

View Article and Find Full Text PDF