Publications by authors named "C Damge"

Since its discovery, insulin has been used as highly specific and effective therapeutic protein to treat type 1 diabetes and later was associated to oral antidiabetic agents in the treatment of type 2 diabetes. Generally, insulin is administered parenterally. Although this route is successful, it still has several limitations, such as discomfort, pain, lipodystrophy at the injection sites and peripheral hyperinsulinemia, which may be the cause of side effects and some complications.

View Article and Find Full Text PDF

The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-¹³C] glucose and ²H₂O. Plasma glucose ²H and ¹³C enrichments were quantified and the contribution of glycogenolysis and gluconeogenesis to overall glucose production were estimated.

View Article and Find Full Text PDF

Nanoparticles loaded with two different commercial insulins (Actrapid, Novorapid and based on different blends of a biodegradable polyester (poly-epsilon-caprolactone) and a polycationic non-biodegradable acrylic polymer (Eudragit RS) were characterized in vitro. The zeta potential was positive whenever Eudragit RS was part of the nanoparticles matrix. The encapsulation efficiency was ~ 96% except for Novorapid-loaded particles of poly-epsilon-caprolactone (only 35%).

View Article and Find Full Text PDF

Nanoparticles (prepared from a mixture of polyester and a polycationic polymer) loaded with insulin were prepared by a double emulsion method followed by evaporation solvent. Low molecular weight heparin (LMWH) was bound by electrostatic interactions onto the surface of the particles to confer Stealth properties. These nanoparticles were characterized in vitro (mean diameter, zeta potential, encapsulation efficiency, and release kinetics) and compared with conventional (without LMWH) and unloaded nanoparticles.

View Article and Find Full Text PDF

Nanoparticles prepared with a blend of a biodegradable polyester (poly(epsilon-caprolactone)) and a polycationic nonbiodegradable acrylic polymer (Eudragit RS) have been used as a drug carrier for oral administration of a short-acting insulin analogue, aspart-insulin. Insulin-loaded nanoparticles, about 700 nm in diameter, encapsulated 97.5% of insulin and were able to release about 70% of their content in vitro in a neutral medium over 24 h.

View Article and Find Full Text PDF