Publications by authors named "C DaSilva"

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

The ability of plants to recover after stressful events is crucial for resuming growth and development and is a key trait when studying stress tolerance. However, there is a lack of information on the physiological responses and the time required to restore homeostasis after the stress experience. This study aimed to (i) enhance understanding of soybean photosynthesis performance during saline waterlogging and (ii) investigate the effects of this combined stress during the reoxygenation and recovery period.

View Article and Find Full Text PDF

Priming enables plants to respond more promptly, minimise damage, and survive subsequent stress events. Here, we aimed to assess the efficacy of priming and cross-priming in mitigating the stress caused by waterlogging and/or dehydration in soybeans (Glycine max ). Soybean plants were cultivated in a greenhouse in plastic pots in which soil moisture was maintained at pot capacity through irrigation.

View Article and Find Full Text PDF

Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems.

View Article and Find Full Text PDF
Article Synopsis
  • Saline and wet environments cause significant stress to most plants, leading to decreased growth and yield due to osmotic, ionic, and oxidative challenges.
  • Halophytes are specially adapted plants that manage these stresses through mechanisms like ion regulation, energy maintenance, and antioxidants, allowing them to thrive in harsh conditions.
  • Understanding how halophytes function can help in developing resilient crops, which is essential for coping with the impacts of climate change and improving agricultural productivity in challenging environments.
View Article and Find Full Text PDF