Phenanthrene (PHE) is a polycyclic aromatic hydrocarbon categorized as a high priority organic pollutant being toxic for the ecosystem and human health, and its sorption on natural organic or inorganic substances seems a well-promising method for its removal from water streams. The goals of the present work are (i) to assess the capacity of low-cost adsorbents fabricated by treating coffee wastes and diatomaceous earth to remove PHE from water; (ii) to elucidate the role of the pore structure on PHE sorption dynamics; and (iii) to assess the potential to regenerate adsorbents loaded with PHE, by using the novel technology of cold atmospheric plasma (CAP). Diatomaceous earth (DE) and DE pre-treated with sodium hydroxide (NaOH) or phosphoric acid (HPO) were chosen as inorganic adsorbents.
View Article and Find Full Text PDFIn spite of the progress achieved on the photo-catalytic treatment of water streams, there is still a gap of knowledge on the optimization of the performance of continuous-flow photo-reactors. Zinc-oxide (ZnO) nanoparticles were immobilized on Duranit (80% silica + 20% alumina) inert balls with dip-coating and thermal annealing. The immobilized ZnO nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, and Raman spectroscopy.
View Article and Find Full Text PDFThe in-situ treatment of solid wastes might be regarded as cost-effective and minimum environmental fingerprint solution, particularly with reference to contaminated soils, offering several benefits compared to ex-situ methods. In this short communication it is described the study of a lab-scale coaxial dielectric barrier discharge (DBD) plasma reactor simulating the in-situ soil remediation conditions for the first time. In this conceptual design, the contaminated medium is handled as a part of the electrical discharge, while the plasma discharges are produced directly within the contaminated porous medium under treatment, thus scattering reactive species directly in the air contained inside its interconnected pores.
View Article and Find Full Text PDFΤhe present study investigates the pore structure and transport properties of carbon nanotube-modified cementitious mortars after exposure to freeze-thaw cycles and immersion to sulfate ion solution (sulfate attack) and compares them to those of un-exposed mortars. The effect of parameters related to carbon nanotube content (within the range of 0.2-0.
View Article and Find Full Text PDFA variety of aqueous suspensions (nanofluids) of zero-valent nano-particles (nZVI) are prepared by wet chemistry techniques, their stability and longevity is evaluated by physic-chemical methods of characterization, and their reactivity toward the dechlorination of per-chloro-ethylene (PCE) is examined with tests in batch reactors. For assessing the mobility, longevity and reactivity of nZVI suspensions (nanofluids), under flow-through conditions, visualization multiphase flow and transport tests are performed on a glass-etched pore network. The nZVI breakthrough curves are constructed by measuring the transient variation of the iron concentration in the effluent with atomic absorption spectroscopy.
View Article and Find Full Text PDF