Publications by authors named "C D Masselon"

Single particle mass analysis methods allow the measurement and characterization of individual nanoparticles, viral particles, as well as biomolecules like protein aggregates and complexes. Several key benefits are associated with the ability to analyze individual particles rather than bulk samples, such as high sensitivity and low detection limits, and virtually unlimited dynamic range, as this figure of merit strictly depends on analysis time. However, data processing and interpretation of single particle data can be complex, often requiring advanced algorithms and machine learning approaches.

View Article and Find Full Text PDF

Nanoelectromechanical systems (NEMS)-based mass spectrometry (MS) is an emerging technique that enables determination of the mass of individual adsorbed particles by driving nanomechanical devices at resonance and monitoring the real-time changes in their resonance frequencies induced by each single molecule adsorption event. We incorporate NEMS into an Orbitrap mass spectrometer and report our progress towards leveraging the single-molecule capabilities of the NEMS to enhance the dynamic range of conventional MS instrumentation and to offer new capabilities for performing deep proteomic analysis of clinically relevant samples. We use the hybrid instrument to deliver E.

View Article and Find Full Text PDF

Mass measurements in the mega-to giga-Dalton range are essential for the characterization of natural and synthetic nanoparticles, but very challenging to perform using conventional mass spectrometers. Nano-electro-mechanical system (NEMS) based MS has demonstrated unique capabilities for the analysis of ultra-high mass analytes. Yet, system designs to date included constraints transferred from conventional MS instruments, such as ion guides and high vacuum requirements.

View Article and Find Full Text PDF

When studying viruses, the most prevalent aspects that come to mind are their structural and functional features, but this leaves in the shadows a quite universal characteristic: their mass. Even if approximations can be derived from size and density measurements, the multi MDa to GDa mass range, featuring a majority of viruses, has so far remained largely unexplored. Recently, nano-electromechanical resonator-based mass spectrometry (NEMS-MS) has demonstrated the ability to measure the mass of intact DNA filled viral capsids in excess of 100 MDa.

View Article and Find Full Text PDF

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling.

View Article and Find Full Text PDF