With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}→ν_{a}. We report new limits on fermionic dark matter absorption (χ+A→ν+A) and sub-GeV DM-nucleus 3→2 scattering (χ+χ+A→ϕ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons).
View Article and Find Full Text PDF^{180m}Ta is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime surpasses the half-lives of all other known β and electron capture decays due to the large K-spin differences and small energy differences between the isomeric and lower-energy states. Detecting its decay presents a significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms, the nature of dark matter, and K-spin violation.
View Article and Find Full Text PDFThe Majorana Demonstrator searched for neutrinoless double-β decay (0νββ) of ^{76}Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.
View Article and Find Full Text PDFAxions were originally proposed to explain the strong-CP problem in QCD. Through axion-photon coupling, the Sun could be a major source of axions, which could be measured in solid state detection experiments with enhancements due to coherent Primakoff-Bragg scattering. The Majorana Demonstrator experiment has searched for solar axions with a set of ^{76}Ge-enriched high purity germanium detectors using a 33 kg-yr exposure collected between January, 2017 and November, 2019.
View Article and Find Full Text PDF