Publications by authors named "C D Bailyn"

Accretion disks around compact objects are expected to enter an unstable phase at high luminosity. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole.

View Article and Find Full Text PDF

All disc-accreting astrophysical objects produce powerful disc winds. In compact binaries containing neutron stars or black holes, accretion often takes place during violent outbursts. The main disc wind signatures during these eruptions are blue-shifted X-ray absorption lines, which are preferentially seen in disc-dominated 'soft states'.

View Article and Find Full Text PDF

Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10.

View Article and Find Full Text PDF