Oximation of substituted ketofurfuryl alcohols in the presence of hydroxylamine hydrochloride and pyridine in ethanol as solvent led to a new class of spiro derivatives presenting a 7-methylene-1,6-dioxa-2-azaspiro [4.4] nona-2,8-diene skeleton along with, in some cases, the predictable oxime. The structures of such spiro compounds were determined by 2D NMR spectroscopy.
View Article and Find Full Text PDF-Containing heterocycles are important scaffolds due to their ubiquitous presence in bioactive compounds. Their synthesis has been considered as an important research field. In this work we report the access to 6- and 7-membered rings a photoinduced strategy.
View Article and Find Full Text PDFspecies are widely distributed in central and southern Europe, east Africa, southwest Asia, and America. Several species are known for edible fruits, especially and . These delicious fruits, characterized by their remarkable nutritional and biological values, are widely used in traditional medicine.
View Article and Find Full Text PDFPolyunsaturated fatty acids (PUFA) are oxidized in vivo under oxidative stress through free radical pathway and release cyclic oxygenated metabolites, which are commonly classified as isoprostanes and isofurans. The discovery of isoprostanes goes back twenty-five years compared to fifteen years for isofurans, and great many are discovered. The biosynthesis, the nomenclature, the chemical synthesis of furanoids from α-linolenic acid (ALA, C18:3 n-3), arachidonic acid (AA, C20:4 n-6), adrenic acid (AdA, 22:4 n-6) and docosahexaenoic acid (DHA, 22:6 n-3) as well as their identification and implication in biological systems are highlighted in this review.
View Article and Find Full Text PDFThe extreme temperatures generated in the melon crop, early harvest, induce an increase in reactive oxygen species (ROS) plant levels leading to oxidative stress. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are plant metabolites derived from α-linolenic acid oxidation induced by ROS. The aims of this work were to evaluate PhytoPs and PhytoFs as oxidative stress biomarkers in leaves of melon plants thermally stressed.
View Article and Find Full Text PDF