Publications by authors named "C Crumpacker"

Developing effective vaccines against viral infections have significant impacts on development, prosperity and well-being of human populations. Thus, successful vaccines such as smallpox and polio vaccines, have promoted global societal well-being. In contrast, ineffective vaccines may fuel arguments that retard scientific progress.

View Article and Find Full Text PDF

Themes of discussions in the Special Issue of T Cell Immunity and HIV-1 Pathogenicity are outlined here [...

View Article and Find Full Text PDF

The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome-epigenetic immunity towards a cure.

View Article and Find Full Text PDF

Background: In separate phase 2 trials, 120 patients received maribavir for cytomegalovirus (CMV) infection failing conventional therapy (trial 202) and 119 received maribavir for asymptomatic infection (trial 203). Overall, 172 cleared their CMV infection (CMV DNA <200 copies/mL) within 6 weeks.

Methods: Baseline and posttreatment plasma samples were tested for mutations in viral genes UL97, UL54, and/or UL27.

View Article and Find Full Text PDF

Three decades of research on human immunodeficiency virus (HIV) and AIDS reveal that the human body has developed through evolution a genome immune system embodying epigenetic regulation against pathogenic nucleic acid invasion. In HIV infection, this epigenetic regulation plays a cardinal role in HIV RNA production that silences HIV transcription at a molecular (RNA) level, controls viral load at a cellular (biological) level, and governs the viremic stage of AIDS at the clinical (patient) level. Even though the human genome is largely similar among humans and HIV is a single viral species, human hosts show significant differences in viral RNA levels, ranging from cell to organ to individual and expressed as elite controllers, posttreatment controllers, and patients with AIDS.

View Article and Find Full Text PDF