Publications by authors named "C Crespos"

Classical-limit quantum dynamics is used to explain the origin of the quantum thresholds of chemical reactions from their classical dynamics when these are vibrationally nonadiabatic across the interaction region. This study is performed within the framework of an elementary model of chemical reaction that mimics the passage from the free rotation of the reagents to the bending vibration at the transition state to the free rotation of the products.

View Article and Find Full Text PDF

The classical trajectory method in a quantum spirit assigns statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was recently applied to the heterogeneous gas-surface reaction between H2 in its internal ground state and Pd(111) surface e.g.

View Article and Find Full Text PDF

When elementary reactive processes occur at such low energies that only a few states of reactants and/or products are available, quantum effects strongly manifest and the standard description of the dynamics within the classical framework fails. We show here, for H scattering on Pd(111), that by pseudoquantizing in the spirit of Bohr the relevant final actions of the system, along with adequately treating the diffraction-mediated trapping of the incoming wave, classical simulations achieve an unprecedented agreement with state-of-the-art quantum dynamics calculations.

View Article and Find Full Text PDF

The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional. The dynamics are compared to those obtained using the PW91 functional and to experimental data. The results show that the new PES provides a significant improvement in the description of the reactivity in this system.

View Article and Find Full Text PDF

Adiabatic and non-adiabatic quasiclassical molecular dynamics simulations are performed to investigate the role of the crystal face on hot-atom abstraction of H adsorbates by H scattering from covered W(100) and W(110). On both cases, hyperthermal diffusion is strongly affected by the energy dissipated into electron-hole pair excitations. As a result, the hot-atom abstraction is highly reduced in favor of adsorption at low incidence energy and low coverages, i.

View Article and Find Full Text PDF