Despite the remarkable advances in behavioral and brain sciences over the last decades, the mind-body (brain) problem is still an open debate and one of the most intriguing questions for both cognitive neuroscience and philosophy of mind. Traditional approaches have conceived this problem in terms of a contrast between physicalist monism and Cartesian dualism. However, since the late sixties, the landscape of philosophical views on the problem has become more varied and complex.
View Article and Find Full Text PDFPlutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy.
View Article and Find Full Text PDFRegulatory T cells have been shown to prevent the development of autoimmune disease, and can modulate immune responses during infections or following tissue transplantation. Recently, the processes by which CD4+CD25+ regulatory T cells are produced during immune repertoire formation have begun to be elucidated. This review focuses on the role of self-peptides in mediating CD4+CD25+ regulatory T cell selection in the thymus.
View Article and Find Full Text PDFAccumulating evidence indicates that regulatory T cells play a crucial role in preventing autoimmunity. To examine the processes by which regulatory CD4(+) T cells are produced during immune repertoire formation, we have developed transgenic mice that express the influenza virus hemagglutinin (HA) and coexpress major histocompatibility complex class II-restricted T cell receptors (TCRs) with varying affinities for the HA-derived CD4(+) T cell determinant S1. We show that interactions with a single self-peptide can induce thymocytes bearing an autoreactive TCR to undergo selection to become CD4(+) CD25(+) regulatory T cells, and that thymocytes bearing TCRs with low affinity for S1 do not undergo selection into this pathway.
View Article and Find Full Text PDFWe have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA.
View Article and Find Full Text PDF