The correct measurement of the resonance frequency and shell properties of coated microbubbles (MBs) is essential in understanding and optimizing their response to ultrasound (US) exposure parameters. In diagnostic and therapeutic ultrasound, MBs are typically surrounded by blood; however, the influence of the medium charges on the MB resonance frequency has not been systematically studied using controlled measurements. This study aims to measure the medium charge interactions on MB behavior by measuring the frequency-dependent attenuation of the same size MBs in mediums with different charge densities.
View Article and Find Full Text PDFLiver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded CF NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS).
View Article and Find Full Text PDFLiver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded CF NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound.
View Article and Find Full Text PDFShell-stabilized gas microbubbles (MB) and nanobubbles (NB) are frequently used for biomedical ultrasound imaging and therapeutic applications. While it is widely recognized that monodisperse bubbles can be more effective in these applications, the efficient formulation of uniform bubbles at high concentrations is difficult to achieve. Here, it is demonstrated that a standard mini-extruder setup, commonly used to make vesicles or liposomes, can be used to quickly and efficiently generate monodisperse NBs with high yield.
View Article and Find Full Text PDFHypothesis: Fluorocarbon gases introduced above monolayers of phospholipids at the air/water interface were recently found to promote the adsorption of diverse molecular compounds, with potential application in drug-loaded microbubble design. Quantitative determination of the fluorocarbon present in the monolayers is strongly needed for the development of such applications. We hypothesized that neutron reflectometry (NR) and ellipsometry experiments would allow quantification of the fluorocarbon trapped in the monolayers.
View Article and Find Full Text PDF