The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors.
View Article and Find Full Text PDFDry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4 T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice.
View Article and Find Full Text PDFAlthough the microbial communities from seminal fluid were an unexplored field some decades ago, their characteristics and potential roles are gradually coming to light. Therefore, a complex and specific microbiome population with commensal niches and fluctuating species has started to be revealed. In fact, certain clusters of bacteria have been associated with fertility and health, while the outgrowth of several species is potentially correlated with infertility indicators.
View Article and Find Full Text PDFBackground: Several chronic conditions have been identified as risk factors for severe COVID-19 infection, yet the implications of multimorbidity need to be explored. The objective of this study was to establish multimorbidity clusters from a cohort of COVID-19 patients and assess their relationship with infection severity/mortality.
Methods: The MRisk-COVID Big Data study included 14 286 COVID-19 patients of the first wave in a Spanish region.
The purpose of this study is to provide novel information through Next Generation Sequencing (NGS) for the characterization of viral and bacterial RNA cargo of human sperm cells from healthy fertile donors. For this, RNA-seq raw data of poly(A) RNA from 12 sperm samples from fertile donors were aligned to microbiome databases using the GAIA software. Species of viruses and bacteria were quantified in Operational Taxonomic Units (OTU) and filtered by minimal expression level (>1% OTU in at least one sample).
View Article and Find Full Text PDF