Publications by authors named "C Collini"

Microneedles hold the potential for enabling shallow skin penetration applications where biomarkers are extracted from the interstitial fluid (ISF) and drugs are injected in a painless and effective manner. To this purpose, needles must have an inner channel. Channeled needles were demonstrated using custom silicon microtechnology, having several needle tip geometries.

View Article and Find Full Text PDF

Many efforts have been spent in the last decade for the development of nanoscale synaptic devices integrated into neuromorphic circuits, trying to emulate the behavior of natural synapses. The study of brain properties with the standard approaches based on biocompatible electrodes coupled to conventional electronics, however, presents strong limitations, which in turn could be overcame by the in-situ growth of neuronal networks coupled to memristive devices. To meet this challenging task, here two different chips were designed and fabricated for culturing neuronal cells and sensing their electrophysiological activity.

View Article and Find Full Text PDF

This work describes the development and testing of a microfabricated sensor for rapid cell growth monitoring, especially focused on yeast quality assessment for wine applications. The device consists of a NMOS ISFET sensor with Si(3)N(4) gate, able to indirectly monitor extracellular metabolism through pH variation of the medium, and a solid-state reference electrode implemented with PVC membranes doped with lipophilic salts (tetrabutylammonium-tetrabutylborate (TBA-TBB) and Potassium tetrakis(4-chlorphenyl)borate (KTClpB)). The use of a solid state reference electrode enables the implementation of a large number of cell assays in parallel, without the need of external conventional reference electrodes.

View Article and Find Full Text PDF