Publications by authors named "C Coleclough"

SeVRSV is a replication-competent Sendai virus (SeV)-based vaccine carrying the respiratory syncytial virus (RSV) fusion protein (F) gene. Unmanipulated, non-recombinant SeV is a murine parainfluenza virus type 1 (PIV-1) and serves as a Jennerian vaccine for human PIV-1 (hPIV-1). SeV protects African green monkeys (AGM) from infection after hPIV-1 challenge.

View Article and Find Full Text PDF

The importance of antigen-specific CD4(+) helper T cells in virus infections is well recognized, but their possible role as direct mediators of virus clearance is less well characterized. Here we describe a recombinant Sendai virus strategy for probing the effector role(s) of CD4(+) T cells. Mice were vaccinated with DNA and vaccinia virus recombinant vectors encoding a secreted human immunodeficiency virus type 1 (HIV-1) envelope protein and then challenged with a Sendai virus carrying a homologous HIV-1 envelope gene.

View Article and Find Full Text PDF

A central obstacle to the design of a global HIV-1 vaccine is virus diversity. Pathogen diversity is not unique to HIV-1, and has been successfully conquered in other fields by the creation of vaccine cocktails. Here we describe the testing of an HIV-1 envelope cocktail vaccine.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is among the most important and serious pediatric respiratory diseases, and yet after more than four decades of research an effective vaccine is still unavailable. This review examines the role of the immune response in reducing disease severity; considers the history of RSV vaccine development; and advocates the potential utility of Sendai virus (a murine paramyxovirus) as a xenogenic vaccine vector for the delivery of RSV antigens. The immunogenicity and protective efficacy of RSV-recombinant Sendai virus vectors constructed using reverse genetics is examined.

View Article and Find Full Text PDF

We find that a single respiratory administration of replicationally inactivated influenza A viral particles most often elicits a waning serum antibody response, as the long-sustained bone marrow antiviral plasma cell populations characteristically induced by viral infection are lacking, though antiviral plasma cells at other sites may occasionally persist for a long time. To determine whether this alteration in the pattern of the B-cell response is a reflection of the nature of T-helper (Th) priming, we simultaneously primed B cells with inactivated influenza A/PR8(H1N1) and Th cells with infectious A/x31(H3N2). We show that Th cells cross-react extensively between these two viruses, although the antibody response to viral envelope glycoproteins is completely non-cross-reactive.

View Article and Find Full Text PDF