Quantum dots (QDs) are inorganic semiconductor nanocrystals capable of emitting light. The current major challenge lies in the use of heavy metals, which are known to be highly toxic to humans and pose significant environmental risks. Researchers have turned to indium (In) as a promising option for more environmentally benign QDs, specifically indium phosphide (InP).
View Article and Find Full Text PDFIn this article, a new system employing an ultrasonic microreactor coupled with a tubular reactor is presented for the continuous generation of polymer nanoparticles. The continuous generation of cross-linked polymer nanoparticles utilizing the monomer butyl methacrylate and the cross-linker ethylene glycol dimethacrylate is demonstrated. Firstly, the miniemulsion polymerization of a monomer-in-water miniemulsion is studied in a batch system.
View Article and Find Full Text PDFThe motion of self-propelling microswimmers is significantly affected by confinement, which can enhance or reduce their mobility and also steer the direction of their propulsion. While their interactions with solid boundaries have already received considerable attention, many aspects of the influence of liquid-liquid interfaces (LLI) on active particle propulsion still remain unexplored. In this work, we studied the adsorption and motion of bimetallic Janus sideways propelled rods dispersed at the interface between an aqueous solution of hydrogen peroxide and oil.
View Article and Find Full Text PDFQuantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group.
View Article and Find Full Text PDFDespite a wide set of experimental data and a large number of studies, the quantitative description of the relaxation mechanisms involved in the disorientation process of bidisperse blends is still under discussion. In particular, while it has been shown that the relaxation of self-unentangled long chains diluted in a short chain matrix is well approximated by a Constraint Release Rouse (CRR) mechanism, there is no consensus on the value of the average release time of their entanglements, τobs, which fixes the timescale of the CRR relaxation. Therefore, the first objective of the present work is to discuss the different approaches proposed to determine this time and compare them to a large set of experimental viscoelastic data, either newly measured (poly(methyl-)methacrylate and 1,4-polybutadiene blends) or coming from the literature (polystyrene and polyisoprene blends).
View Article and Find Full Text PDF