Cancer Chemother Pharmacol
July 2023
Purpose: It has become increasingly clear that new multiagent combination regimens are required to improve survival rates in acute myeloid leukemia (AML). We recently reported that ART631, a first-in-class 2-carbon-linked artemisinin-derived dimer (2C-ART), was not only efficacious as a component of a novel three-drug combination regimen to treat AML, but, like other synthetic artemisinin derivatives, demonstrated low clinical toxicity. However, we ultimately found ART631 to have suboptimal solubility and stability properties, thus limiting its potential for clinical development.
View Article and Find Full Text PDFSuccessful cell therapy requires cells to resist the hostile ischemic myocardium, be retained to continue secreting cardioprotective growth factors/exosomes, and resist immunological host responses. Clinically relevant stem/progenitor cells in a rodent model of acute myocardial infarction (MI) demonstrated that neonatal cardiac mesenchymal stromal cells (nMSCs) provide the most robust cardiac functional recovery. Transplanted nMSCs significantly increased the number of tissue reparative macrophages and regulatory T-cells and decreased monocyte-derived inflammatory macrophages and neutrophils in the host myocardium.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) remains a devastating disease, with low cure rates despite intensive standard chemotherapy regimens. In the past decade, targeted antileukemic drugs have emerged from research efforts. Nevertheless, targeted therapies are often effective for only a subset of patients whose leukemias harbor a distinct mutational or gene expression profile and provide only transient antileukemic responses as monotherapies.
View Article and Find Full Text PDFObjective: After cardiac injury, endogenous repair mechanisms are ineffective. However, cell-based therapies provide a promising clinical intervention based on their ability to restore and remodel injured myocardium due to their paracrine factors. Recent clinical trials have demonstrated that adult cardiosphere-derived cell therapy is safe for the treatment of ischemic heart failure, although with limited regenerative potential.
View Article and Find Full Text PDFArtemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro.
View Article and Find Full Text PDF