Cylindrical vector (CV) beams have sparked considerable interest due to their extraordinary vectorial properties, desirable for applications ranging from microscopy to high energy physics. Increasing demand for cost-effective, small-footprint photonics has fueled the development of photonic integrated circuits (PICs) capable of generating structured light beams in recent years. This technology however suffers from low reconfigurability, limiting the variety of CV beams that can be generated from these devices.
View Article and Find Full Text PDFWe present a numerical study of the intensity and polarization structure of vector helical Ince-Gaussian (VHIG) modes, which present a distinct subclass of vector Ince-Gaussian modes with defined parameter settings. The intensity profile of VHIG beams has an elliptic hollow structure, while the polarization distribution shows multiple single-charge polarization vortices arranged along a line. By selecting the mode order, phase factor and ellipticity of the VHIG beams, we can control the number of elliptic rings, the number of polarization vortices, and the topology of the vector singularity.
View Article and Find Full Text PDFVector vortex beams, featuring independent spatial modes in orthogonal polarization components, offer an increase in information density for emerging applications in both classical and quantum communication technology. Recent advances in optical instrumentation have led to the ability of generating and manipulating such beams. Their tomography is generally accomplished by projection measurements to identify polarization as well as spatial modes.
View Article and Find Full Text PDFAn electric field propagating along a non-planar path can acquire geometric phases. Previously, geometric phases have been linked to spin redirection and independently to spatial mode transformation, resulting in the rotation of polarisation and intensity profiles, respectively. We investigate the non-planar propagation of scalar and vector light fields and demonstrate that polarisation and intensity profiles rotate by the same angle.
View Article and Find Full Text PDFWe numerically and experimentally evidence photonic orbit-orbit interactions in freely propagating asymmetrical beams carrying orbital angular momentum. A Fresnel biprism is used to carry out the wavefront division of an optical vortex beam, generating two complementary asymmetrical beams. The optical orbital Hall effect is presented in the form of angular deviations from the beam's geometrical expectation.
View Article and Find Full Text PDF