Lung cancer remains the most common cause of cancer death in the US and worldwide. Currently, there is no implemented population-based screening for lung cancer. Of all the markers identified, none have achieved sufficient diagnostic significance to reach clinical application.
View Article and Find Full Text PDFInterleukin 3 (IL-3) stimulates the proliferation and differentiation of various haematopoietic progenitor cells. Recently, IL-3 and other cytokines were reported to exert a neurotrophic activity and to be associated with neurological disorders, suggesting their complex role in the central nervous system. We now show that overexpression of IL-3 in transgenic mice causes a motor neuron disease with several features of amyotrophic lateral sclerosis and progressive muscular atrophy.
View Article and Find Full Text PDFThe GM2 gangliosidoses are a group of heritable neurodegenerative disorders caused by excessive accumulation of the ganglioside GM2 owing to deficiency in beta-hexosaminidase activity. Tay-Sachs and Sandhoff diseases have similar clinical phenotypes resulting from a deficiency in human hexosaminidase alpha and beta subunits, respectively. The lack of treatment for GM2 gangliosidoses stimulated interest in developing animal models to understand the molecular mechanisms underlying the various forms of this disease and to test new potential therapies.
View Article and Find Full Text PDFTreatment of SKBr3 human breast carcinoma cells with the benzoquinoid ansamycin, geldanamycin, rapidly depletes p185c-erbB-2 protein-tyrosine kinase. Loss of p185c-erbB-2 is initiated by disruption of a heteromeric complex between p185c-erbB-2 and the 94-kDa glucose-regulated protein, GRP94, to which geldanamycin binds avidly. Here we report that within minutes of exposure to geldanamycin, mature p185c-erbB-2 becomes polyubiquitinated.
View Article and Find Full Text PDFTreatment of SKBr3 cells with benzoquinone ansamycins, such as geldanamycin (GA), depletes p185erbB2, the receptor tyrosine kinase encoded by the erbB2 gene. In the same cells, a biologically active benzoquinone photoaffinity label specifically binds a protein of about 100 kDa, and the ability of various GA derivatives to reduce the intracellular level of p185erbB2 correlates with their ability to compete with the photoaffinity label for binding to this protein. In this report, we present evidence that the approximately 100-kDa ansamycin-binding protein is GRP94.
View Article and Find Full Text PDF