Near-infrared spectroscopy (NIRS) has recently emerged as a valuable tool for monitoring organic waste utilized in anaerobic digestion processes. Over the past decade, NIRS has significantly improved the characterization of organic waste by enabling the prediction of several crucial parameters such as biochemical methane potential, carbohydrate, lipid and nitrogen contents, Chemical Oxygen Demand, and kinetic parameters. This study investigates the application of NIRS for predicting the levels of Sulfur (S) and Phosphorus (P) within organic waste materials.
View Article and Find Full Text PDFRecently, numerous experimental studies have been undertaken to understand the interactions between different feedstocks in anaerobic digestion. They have unveiled the potential of blending substrates in the process. Nevertheless, these experiments are time-intensive, prompting the exploration of various optimization approaches.
View Article and Find Full Text PDFFast characterization of organic waste using near infrared spectroscopy (NIRS) has been successfully developed in the last decade. However, up to now, an on-site use of this technology has been hindered by necessary sample preparation steps (freeze-drying and grinding) to avoid important water effects on NIRS. Recent research studies have shown that these effects are highly non-linear and relate both to the biochemical and physical properties of samples.
View Article and Find Full Text PDFAnaerobic digestion is an increasingly widespread process for organic waste treatment and renewable energy production due to the methane content of the biogas. This biological process also produces a digestate (i.e.
View Article and Find Full Text PDFThe near infrared spectra of thirty-three freeze-dried and ground organic waste samples of various biochemical composition were collected on four different optical systems, including a laboratory spectrometer, a transportable spectrometer with two measurement configurations (an immersed probe, and a polarized light system) and a micro-spectrometer. The provided data contains one file per spectroscopic system including the reflectance or absorbance spectra with the corresponding sample name and wavelengths. A reference data file containing carbohydrates, lipid and nitrogen content, biochemical methane potential (BMP) and chemical oxygen demand (COD) for each sample is also provided.
View Article and Find Full Text PDF