Resolution of deep venous thrombosis involves coordinated inflammatory processes. T cells regulate inflammation in vivo and modulate vascular remodeling in other settings, but their role in venous thrombus resolution remains undefined. To determine the role of T cells in venous thrombus resolution in vivo, stasis induced thrombi were created by vena cava ligation in outbred CD-1 mice.
View Article and Find Full Text PDFObjective: The tumor suppressor protein p53 regulates angiogenesis and is a key regulatory mediator of cellular apoptosis, proliferation, and growth. p53 expression is induced in response to ischemia; however, its role in regulating ischemia-induced angiogenesis and arteriogenesis remains undefined. The objective of this study was to define the role of p53 in regulating ischemia-induced angiogenesis and arteriogenesis and to identify mechanisms by which this regulation occurs in vivo.
View Article and Find Full Text PDFObjective: Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall.
View Article and Find Full Text PDFJ Vasc Surg Venous Lymphat Disord
January 2015
Objective: We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis.
Methods: In CD1 mice, we performed surgical inferior vena cava ligation (stasis thrombosis), stenosis (thrombosis with recanalization), or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution and quantified the messenger RNA and protein levels of membrane-type matrix metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at days 4, 8, and 12 after surgery.
Background: The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA.
Objective: To investigate the role of PAI-2 in venous thrombus formation and resolution.