Although a lack of diversity in genetic studies is an acknowledged obstacle for personalized medicine and precision public health, Latin American populations remain particularly understudied despite their heterogeneity and mixed ancestry. This gap extends to COVID-19 despite its variability in susceptibility and clinical course, where ethnic background appears to influence disease severity, with non-Europeans facing higher hospitalization rates. In addition, access to high-quality samples and data is a critical issue for personalized and precision medicine, and it has become clear that the solution lies in biobanks.
View Article and Find Full Text PDFThermophilic microorganisms possess several adaptations to thrive in high temperature, which is reflected as biosynthesis of proteins and thermostable molecules, isolation and culture represent a great methodological challenge, therefore High throughput sequencing enables screening of the whole bacterial genome for functional potential, providing rapid and cost-effective information to guide targeted cultures for the identification and characterization of novel natural products. In this study, we isolated two thermophilic bacterial strains corresponding to LB7 and LB8, from the microbial mats in the Atacama Desert. By combining genome mining, targeted cultures and biochemical characterization, we aimed to identify their capacity to synthesize bioactive compounds with antimicrobial properties.
View Article and Find Full Text PDFBacteriophages have been proposed as biological controllers to protect plants against different bacterial pathogens. In this scenario, one of the main challenges is the low viability of phages in plants and under adverse environmental conditions. This work explores the use of 12 compounds and 14 different formulations to increase the viability of a phage mixture that demonstrated biocontrol capacity against pv.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
October 2024
Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties.
View Article and Find Full Text PDF