Publications by authors named "C Castanaro"

Although T cell checkpoint inhibitors have transformed the treatment of cancer, the molecular determinants of tumor cell sensitivity to T cell-mediated killing need further elucidation. Here, we describe a mouse genome-scale CRISPR knockout screen that identifies tumor cell TNFα signaling as an important component of T cell-induced apoptosis, with NF-κB signaling and autophagy as major protective mechanisms. Knockout of individual autophagy genes sensitized tumor cells to killing by T cells that were activated via specific TCR or by a CD3 bispecific antibody.

View Article and Find Full Text PDF

Angiopoietin-1 (Ang1) and Angiopoietin-2 (Ang2) are ligands for Tie2, an endothelial-specific receptor tyrosine kinase that is an essential regulator of angiogenesis. Here we report the identification, via expression cloning, of thrombomodulin (TM) as another receptor for Ang1 and Ang2. Thrombomodulin is an endothelial cell surface molecule that plays an essential role as a coagulation inhibitor via its function as a cofactor in the thrombin-mediated activation of protein C, an anticoagulant protein, as well as thrombin-activatable fibrinolysis inhibitor (TAFI).

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is a clinically validated target in head and neck squamous cell carcinoma (HNSCC), where EGFR-blocking antibodies are approved for first-line treatment. However, as with other targeted therapies, intrinsic/acquired resistance mechanisms limit efficacy. In the FaDu HNSCC xenograft model, we show that combined blockade of EGFR and ERBB3 promotes rapid tumor regression, followed by the eventual outgrowth of resistant cells.

View Article and Find Full Text PDF

EGFR blocking antibodies are approved for the treatment of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Although ERBB3 signaling has been proposed to limit the effectiveness of EGFR inhibitors, the underlying molecular mechanisms are not fully understood. To gain insight into these mechanisms, we generated potent blocking antibodies against ERBB3 (REGN1400) and EGFR (REGN955).

View Article and Find Full Text PDF

The angiopoietins Ang1 (ANGPT1) and Ang2 (ANGPT2) are secreted factors that bind to the endothelial cell-specific receptor tyrosine kinase Tie2 (TEK) and regulate angiogenesis. Ang1 activates Tie2 to promote blood vessel maturation and stabilization. In contrast, Ang2, which is highly expressed by tumor endothelial cells, is thought to inhibit Tie2 activity and destabilize blood vessels, thereby facilitating VEGF-dependent vessel growth.

View Article and Find Full Text PDF