Publications by authors named "C Castan-Guerrero"

We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin SiN membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter.

View Article and Find Full Text PDF

We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects.

View Article and Find Full Text PDF

The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films.

View Article and Find Full Text PDF

Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic states inside the lattice. A remarkable transition was observed in the type of domain structures as a function of p: for the large periodicities (p > 300 nm), conventional 90° and 180° domain walls were formed, whereas in small-period antidot arrays (p ≦ 160 nm) magnetic superdomain walls (SDWs) were nucleated to separate regions with different average magnetization direction, the so-called magnetic superdomains.

View Article and Find Full Text PDF

X-ray magnetic circular dichroism (XMCD), longitudinal (χac) and transverse (TS) ac magnetic susceptibility have been measured in the RCo2 series (R = Ho, and Tm) as a function of temperature and applied magnetic field. We show that parimagnetism is a general behavior among the RCo2 ferrimagnetic series (R being a heavy rare-earth ion). XMCD results supply evidence of the presence of two compensation temperatures above Tc, defining two different parimagnetic configurations, which is a fully unexpected result.

View Article and Find Full Text PDF