Publications by authors named "C Capasso"

This study investigates aliphatic sulfonamide derivatives as inhibitors of the α-, β-, and γ-class carbonic anhydrase (CA) isoforms from Vibrio cholerae (VchCAs). A series of 26 compounds bearing a triazole linker and urea- or ether-based tails were described and evaluated for their inhibitory action using a stopped-flow CO hydrase technique. These inhibitors demonstrated a preferential efficacy against VchCAβ.

View Article and Find Full Text PDF

Porphyromonas gingivalis, a key pathogen in periodontal, plays a critical role in systemic pathologiesdiseases by evading host defence mechanisms and invading periodontal tissues. Targeting its virulence mechanisms and overcoming drug resistance are essential steps toward effective therapeutic development. In this study, we focused on the Carbonic Anhydrase (CA, EC: 4.

View Article and Find Full Text PDF

is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.

View Article and Find Full Text PDF

Ciprofloxacin (CPX) is one of the most employed antibiotics in clinics to date. However, the rise of drug-resistant bacteria is dramatically impairing its efficacy, especially against life-threatening pathogens, such as . This Gram-negative bacterium is an opportunistic pathogen, often infecting immuno-compromised patients with severe or fatal outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Carbonic anhydrases (CAs) IX and XII are important in the development and spread of various solid tumors, making them targets for cancer treatment.
  • Researchers synthesized new coumarin derivatives mixed with arylsulfonamide or biotin to create effective selective inhibitors for different human carbonic anhydrase isoforms.
  • One compound, Coumarin-sulfonamide derived 27, was particularly effective against hCA XII, while compound 32 was the most potent for hCA IX, showing better selectivity and efficiency compared to existing drugs like acetazolamide.
View Article and Find Full Text PDF