Publications by authors named "C Cant"

Calls for "ethical Artificial Intelligence" are legion, with a recent proliferation of government and industry guidelines attempting to establish ethical rules and boundaries for this new technology. With few exceptions, they interpret Artificial Intelligence (AI) ethics narrowly in a liberal political framework of privacy concerns, transparency, governance and non-discrimination. One of the main hurdles to establishing "ethical AI" remains how to operationalize high-level principles such that they translate to technology design, development and use in the labor process.

View Article and Find Full Text PDF

Signal-regulatory proteins (SIRPs) represent a new family of inhibitory/activating receptor pairs. They consist of 3 highly homologous immunoglobulin (Ig)-like domains in their extracellular regions, but differ in their cytoplasmic regions by the presence (SIRPalpha) or absence (SIRPbeta) of immunoreceptor tyrosine-based inhibitory motifs (ITIMs). To analyze the differential expression on hematopoietic cells, function and ligand binding capacity of SIRPalpha and SIRPbeta molecules, soluble fusion proteins consisting of the extracellular domains of SIRPalpha1, SIRPalpha2, and SIRPbeta1, as well as SIRPalpha/beta-specific and SIRPbeta-specific monoclonal antibodies (MoAbs) were generated.

View Article and Find Full Text PDF

The signal regulating proteins (SIRPs) are a family of ubiquitously expressed transmembrane glycoproteins composed of two subgroups: SIRP alpha and SIRP beta, containing more than ten members. SIRP alpha has been shown to inhibit signalling through a variety of receptors including receptor tyrosine kinases and cytokine receptors. This function involves protein tyrosine kinases and is dependent on immunoreceptor tyrosine-based inhibition motifs which recruit key protein tyrosine phosphatases to the membrane.

View Article and Find Full Text PDF

The signal-regulatory proteins (SIRP) are Ig-like cell surface receptors detected in hematopoietic and non-hematopoietic cells. SIRP are classified as SIRPalpha molecules, containing a 110- to 113-amino acid long, or SIRPbeta molecules, with a 5-amino acid long intracytoplasmic domain. SIRPalpha molecules belong to inhibitory immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing molecules.

View Article and Find Full Text PDF

Signal-regulatory proteins (SIRPs) comprise a novel transmembrane glycoprotein family involved in the negative regulation of receptor tyrosine kinase-coupled signaling pathways. To analyze the expression and function of SIRPs, we prepared soluble recombinant fusion proteins of the extracellular regions of SIRPalpha1 and SIRPalpha2, as well as a variety of monoclonal antibodies (MoAbs) against these domains. The antibodies reacted predominantly with monocytes, granulocytes, dendritic cells, and their precursors, as well as with bone marrow CD34(+), AC133(+), CD90(+) hematopoietic stem/progenitor cells.

View Article and Find Full Text PDF