The interaction between the main psychotropic ingredient of Cannabis, Δ⁹- tetrahydrocannabinol (THC), with the endogenous cannabinoid system (ECS) is a critical and underrated issue that deserves utmost attention. The ECS, indeed, contributes to the formation and regulation of excitatory and inhibitory (E/I) neuronal networks that in the hippocampus underly spatial memory. This study explored sex-specific consequences of prenatal exposure to THC in hippocampus-dependent memory and the underlying cellular and molecular contributors of synaptic plasticity and E/I homeostasis.
View Article and Find Full Text PDFAstrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory.
View Article and Find Full Text PDFIntroduction: Being born either large (LGA) or small for gestational age (SGA) has been associated with an increased risk of developing metabolic syndrome in adulthood. However, the mechanism underlying this early programming remained unclear. Estrogen-related receptor gamma (ERRγ) is an orphan nuclear receptor with a high expression in human placenta, particularly ERRγ1.
View Article and Find Full Text PDFAn altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.
View Article and Find Full Text PDFPhytother Res
November 2023
Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored.
View Article and Find Full Text PDF