Reliable soil moisture information is essential for accurate irrigation scheduling. A wide range of soil moisture sensors are currently available on the market, but their performance needs to be evaluated as most sensors are calibrated under limited laboratory conditions. The aim of this study was to evaluate the performance of six commercially available moisture sensors (HydraProbe, Teros 10, Teros 11, EnviroPro, CS616 and Drill & Drop) and three tensiometers (Irrometer RSU-C-34, Teros 32 and Teros 21) and to establish calibration equations for a typical sandy soil of the Doñana National Park (Huelva, Spain).
View Article and Find Full Text PDFThe retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research.
View Article and Find Full Text PDFThe quality of murine and human oocytes correlates to their mechanical properties, which are tightly regulated to reach the blastocyst stage after fertilization. Oocytes are nonadherent spherical cells with a diameter over 80 μm. Their mechanical properties have been studied in our lab and others using the micropipette aspiration technique, particularly to obtain the oocyte cortical tension.
View Article and Find Full Text PDFCell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration.
View Article and Find Full Text PDFDeciphering the physical mechanisms underlying cell shape changes, while avoiding the cellular interior's complexity, involves the development of controlled basic biomimetic systems that imitate cell functions. In particular, the reconstruction of cytoskeletal dynamics on cell-sized giant unilamellar vesicles (GUVs) has allowed for the reconstituting of some cell-like processes . In fact, such a bottom-up strategy could be the basis for forming protocells able to reorganize or even move autonomously.
View Article and Find Full Text PDF