Publications by authors named "C Cambournac"

We demonstrate the integration of a 30% efficient grating coupler with a compact photonic crystal wavelength demultiplexer (DeMUX). The DeMUX has seven output channels that are spaced 10 nm apart and is aimed at coarse WDM applications. The integrated devices are realized on a high-index-contrast InP membrane using a simple benzocyclobutene wafer bonding technique.

View Article and Find Full Text PDF

We consider a double-pass ring cavity with nonlinear incoherent optical feedback and analyze its response when it is driven by a continuous laser beam. This particular cavity is equivalent, in the temporal domain, to a simple spatial-pattern-generating system made from a Kerr slice and a feedback mirror. After formulating the evolution equations, we investigate the behavior of small-amplitude solutions and obtain an expression for the round-trip gains.

View Article and Find Full Text PDF

We report the experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media and its unique polarization evolution. This was achieved in the spatial domain in a nonbirefringent CS2 planar waveguide.

View Article and Find Full Text PDF

Owing to the nonlinear effect of optical field-induced director reorientation, self-focusing of an optical beam can occur in nematic liquid crystals and an almost diffraction-compensated propagation can be observed with milliwatts of light power and propagation lengths of several millimeters. This opens the way for applications in all-optical signal handling and reconfigurable optical interconnections. Self-focusing of an optical beam in nematic liquid-crystal cells has been studied experimentally and by means of numerical simulation.

View Article and Find Full Text PDF

Quasi-periodic arrays of bright soliton-like beams are obtained experimentally in the picosecond regime as a result of the transverse modulational instability of a noisy continuous background in a planar CS2 waveguide. For a given propagation length, the array is stable from a laser shot to another and for a wide range of input intensities. The experimental period corresponds to the maximum gain of modulational instability only for the intensity just sufficient for soliton formation.

View Article and Find Full Text PDF