Introduction: Recent studies investigating emergency department (ED) thoracotomies (EDTs) focus on patient outcomes to identify optimal candidates for this procedure. However, there is limited but concerning literature regarding healthcare workers occupational exposures resulting from EDT. In this study, we compare rates of blood-borne exposure to immediate procedural success (i.
View Article and Find Full Text PDFJ Math Sociol
April 2024
The biased net paradigm was the first general and empirically tractable scheme for parameterizing complex patterns of dependence in networks, expressing deviations from uniform random graph structure in terms of latent "bias events," whose realizations enhance reciprocity, transitivity, or other structural features. Subsequent developments have introduced local specifications of biased nets, which reduce the need for approximations required in early specifications based on tracing processes. Here, we show that while one such specification leads to inconsistencies, a closely related Markovian specification both evades these difficulties and can be extended to incorporate new types of effects.
View Article and Find Full Text PDFProtein aggregation can produce a wide range of states, ranging from fibrillar structures and oligomers to unstructured and semistructured gel phases. Recent work has shown that many of these states can be recapitulated by relatively simple, topological models specified in terms of multibody interaction energies, providing a direct connection between aggregate intermolecular forces and aggregation products. Here, we examine a low-dimensional network Hamiltonian model (NHM) based on four basic multibody interactions found in any aggregate system.
View Article and Find Full Text PDFProlyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure.
View Article and Find Full Text PDF