Objective: Limb-girdle muscular dystrophy R9 (LGMDR9, formerly known as LGMD2I), caused by variants in the fukutin-related protein (FKRP) gene leads to progressive muscle weakness of the shoulder and pelvic limb-girdles and loss of motor function over time. Clinical management and future trial design are improved by determining which standardized clinical outcome assessments (COA) of function are most appropriate to capture disease presentation and progression, informing endpoint selection and enrollment criteria. The purpose of our study was to evaluate the cross-sectional validity and reliability of clinical outcome assessments in patients with FKRP-related LGMDR9 participating in the Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP) natural history study.
View Article and Find Full Text PDFProtein aggregate myopathies can result from pathogenic variants in genes encoding protein chaperones. DNAJB4 is a cochaperone belonging to the heat shock protein-40 (HSP40) family and plays a vital role in cellular proteostasis. Recessive loss-of-function variants in cause myopathy with early respiratory failure and spinal rigidity, presenting from infancy to adulthood.
View Article and Find Full Text PDFProtein aggregate myopathies can result from pathogenic variants in genes encoding protein chaperones. DNAJB4 is a cochaperone belonging to the heat shock protein-40 (HSP40) family and plays a vital role in cellular proteostasis. Recessive loss-of-function variants in DNAJB4 cause myopathy with early respiratory failure and spinal rigidity, presenting from infancy to adulthood.
View Article and Find Full Text PDF