The clinical finite element analysis (FEA) application in maxillofacial surgery for mandibular fracture is limited due to the lack of a validated FEA model. Therefore, this study aims to develop a validated FEA model for mandibular fracture treatment, by assessing non-comminuted mandibular fracture fixation. FEA models were created for mandibles with single simple symphysis, parasymphysis, and angle fractures; fixated with 2.
View Article and Find Full Text PDFThe prevalence of musculoskeletal symptoms (MSS) like neck and back pain is high among open-surgery surgeons. Prolonged working in the same posture and unfavourable postures are biomechanical risk factors for developing MSS. Ergonomic devices such as exoskeletons are possible solutions that can reduce muscle and joint load.
View Article and Find Full Text PDFIntroduction: While the biomechanical effects of exoskeletons are well studied, research about potential side-effects and adverse events are limited. The aim of this systematic review was to provide an overview of the side-effects and adverse events on shoulder- and back-support exoskeletons during work tasks.
Methods: Four in-field studies and 32 laboratory studies were included in this review, reporting on n = 18 shoulder exoskeletons, n = 9 back exoskeletons, n = 1 full body with a supernumerary arm, and n = 1 combination of shoulder and back exoskeleton.
Surgeons are at high risk for developing musculoskeletal symptoms (MSS), like neck and back pain. Quantitative analysis of 3D neck and trunk movements during surgery can help to develop preventive devices such as exoskeletons. Inertial Measurement Units (IMU) and markerless motion capture methods are allowed in the operating room (OR) and are a good alternative for bulky optoelectronic systems.
View Article and Find Full Text PDF