Background: Adhering to a diet adequate in macronutrients is crucial for the secondary prevention of cardiovascular diseases.
Objective: To assess the prevalence of adherence to recommendations for the consumption of dietary fatty acids for the prevention and treatment of cardiovascular diseases and to estimate whether the presence of certain cardiovascular risk factors would be associated with adherence.
Methods: Cross-sectional study using baseline data from 2,358 participants included in the "Brazilian Cardioprotective Nutritional Program Trial".
Bacterial cytochrome P450 monooxygenase P450BM3 is a promising enzyme to provide novel substrate specificity and enhanced enzymatic activity. The wild type (WT) has been shown to metabolize the widely distributed polychlorinated biphenyl (PCB) 2,3',4,4',5-pentachlorobiphenyl (CB118) to hydroxylated metabolites. However, this reaction requires the coexistence of perfluoroalkyl carboxylic acids (PFCAs).
View Article and Find Full Text PDFCytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate.
View Article and Find Full Text PDFCatching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity.
View Article and Find Full Text PDFGrammar acquisition by non-native learners (L2) is typically less successful and may produce fundamentally different grammatical systems than that by native speakers (L1). The neural representation of grammatical processing between L1 and L2 speakers remains controversial. We hypothesized that working memory is the primary source of L1/L2 differences, by considering working memory within the predictive coding account, which models grammatical processes as higher-level neuronal representations of cortical hierarchies, generating predictions (forward model) of lower-level representations.
View Article and Find Full Text PDF