Rationale: Enhanced nitrous oxide (N O) emissions can occur following grassland break-up for renewal or conversion to maize cropping, but knowledge about N O production pathways and N O reduction to N is very limited. A promising tool to address this is the combination of mass spectrometric analysis of N O isotopocules and an enhanced approach for data interpretation.
Methods: The isotopocule mapping approach was applied to field data using a δ N and δ O map to simultaneously determine N O production pathways contribution and N O reduction for the first time.
Iron overload damages many organs. Unfortunately, therapeutic iron chelators also have undesired toxicity and may deliver iron to microbes. Here we show that a mutant form (K3Cys) of endogenous lipocalin 2 (LCN2) is filtered by the kidney but can bypass sites of megalin-dependent recapture, resulting in urinary excretion.
View Article and Find Full Text PDFWe have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information.
View Article and Find Full Text PDFThe type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins.
View Article and Find Full Text PDFThe open promoter complex (OC) is a central intermediate during transcription initiation that contains a DNA bubble. Here, we employ single-molecule Förster resonance energy transfer experiments and Nano-Positioning System analysis to determine the three-dimensional architecture of a minimal OC consisting of promoter DNA, including a TATA box and an 11-nucleotide mismatched region around the transcription start site, TATA box-binding protein (TBP), RNA polymerase (Pol) II, and general transcription factor (TF)IIB and TFIIF. In this minimal OC, TATA-DNA and TBP reside above the Pol II cleft between clamp and protrusion domains.
View Article and Find Full Text PDF