Publications by authors named "C Brunhoff"

Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model.

View Article and Find Full Text PDF

A critical cell cycle regulatory protein, cyclin A1, has been implicated in the development of acute myeloid leukemia (AML). Here, we have examined the expression and clinical significance of cyclin A1 in childhood acute lymphoblastic leukemia (ALL). Cyclin A1 was highly expressed in lymphoblastic leukemic cell lines and in 22 of 30 ALL patients (73%).

View Article and Find Full Text PDF

Elevated levels of cyclin A1 expression have been implicated in acute myeloid leukemia and in male germ cell tumors. However, a role of cyclin A1 in tumorigenesis of prostate cancer has not been reported. In the present study, expression of cyclin A1 in patients with prostate cancer and a role of cyclin A1 in mediating expression of vascular endothelial growth factor (VEGF) were investigated.

View Article and Find Full Text PDF

Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp).

View Article and Find Full Text PDF

A species-wide phylogeographical study of the root vole (Microtus oeconomus) was performed using the whole 1140 base pair mitochondrial (mt) cytochrome b gene. We examined 83 specimens from 52 localities resulting in 65 unique haplotypes. Our results demonstrate that the root vole is divided into four main mtDNA phylogenetic lineages that seem to have largely allopatric distributions.

View Article and Find Full Text PDF