Publications by authors named "C Brouckaert"

A modelling study is under way in preparation for a planned upgrade of the capacity of the kwaMashu WWTP in eThekwini, South Africa, from 50 to 80 ML/d. When the configuration of an existing plant is to be changed, the most critical part of the model calibration is the influent wastewater fractionation. However, the constantly varying characteristics of wastewater make experimental determination of an adequately representative set of components difficult, time-consuming and expensive, which constitutes significant barriers to the adoption of modelling by many municipalities.

View Article and Find Full Text PDF

This study presents an extensive plant-wide model-based assessment of four alternative activated sludge (AS) configurations for biological nitrogen (N) and phosphorus (P) removal under uncertain influent loads and characteristics. Zeekoegat wastewater treatment plant (WWTP) in South Africa was chosen as case study due to its flexible design that enables operation in four different AS configurations: 3-stage Bardenpho (A2O), University of Cape Town (UCT), UCT modified (UCTM), and Johannesburg (JHB). A metamodeling based global sensitivity analysis was performed on a steady-state plant-wide simulation model using Activated Sludge Model No.

View Article and Find Full Text PDF

The objective of this paper is to use plant-wide modeling to assess the net impacts of varying sludge management strategies. Special emphasis is placed on effluent quality, operational cost and potential resource recovery (energy, nutrients). The study is particularly focused on a centralized bio-solids beneficiation facility (BBF), which enables larger, more capital intensive sludge management strategies.

View Article and Find Full Text PDF

This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions.

View Article and Find Full Text PDF

Process models used for activated sludge, anaerobic digestion and in general wastewater treatment plant process design and optimization have traditionally focused on important biokinetic conversions. There is a growing realization that abiotic processes occurring in the wastewater (i.e.

View Article and Find Full Text PDF