Two- and three-dimensional assembly of nanoparticles has generated significant interest because these higher order structures could exhibit collective behaviors/properties beyond those of the individual nanoparticles. Highly specific interactions between molecules, which biology exploits to regulate molecular assemblies such as DNA hybridization, often provide inspiration for the construction of higher order materials using bottom-up approaches. In this study, higher order assembly of virus-like particles (VLPs) derived from the bacteriophage P22 is demonstrated by using a small adaptor protein, Dec, which binds to symmetry specific sites on the P22 capsid.
View Article and Find Full Text PDFDopa (3,4-dihydroxyphenylalanine) is recognized as a key chemical signature of mussel adhesion and has been adopted into diverse synthetic polymer systems. Dopa's notorious susceptibility to oxidation, however, poses significant challenges to the practical translation of mussel adhesion. Using a surface forces apparatus to investigate the adhesion of mussel foot protein 3 (Mfp3) "slow", a hydrophobic protein variant of the Mfp3 family in the plaque, we have discovered a subtle molecular strategy correlated with hydrophobicity that appears to compensate for Dopa instability.
View Article and Find Full Text PDFMost marine organisms make functional biomolecular materials that extend to varying degrees 'beyond their skins'. These materials are very diverse and include shells, spines, frustules, tubes, mucus trails, egg capsules and byssal threads, to mention a few. Because they are devoid of cells, these materials lack the dynamic maintenance afforded intra-organismic tissues and thus are usually assumed to be inherently more durable than their internalized counterparts.
View Article and Find Full Text PDFBackground: Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage.
View Article and Find Full Text PDF