Publications by authors named "C Boudaba"

Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei.

View Article and Find Full Text PDF

Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking.

View Article and Find Full Text PDF

Glutamate and norepinephrine transmitter systems play critical roles in the synaptic control of hypothalamic magnocellular neurones. We recently reported on a norepinephrine-sensitive glutamate circuit within the paraventricular nucleus (PVN) that projects to magnocellular neurones. Here, we present evidence for norepinephrine regulation of glutamate release in the PVN and supraoptic nucleus (SON) via actions on presynaptic terminals.

View Article and Find Full Text PDF

Chronic dehydration induces structural changes in the hypothalamic supraoptic nucleus (SON), including increased glutamate synapses and retraction of astroglial processes. We performed whole-cell recordings in acute hypothalamic slices to determine whether these changes increase tonic activation of presynaptic metabotropic glutamate receptors (mGluRs) by increasing ambient glutamate in the SON. Activation of presynaptic group III mGluRs caused a decrease in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in SON neurones that was significantly attenuated in slices from dehydrated rats (-27.

View Article and Find Full Text PDF

Parvocellular neurones of the hypothalamic paraventricular nucleus (PVN) comprise neurosecretory and non-neurosecretory subpopulations. We labelled neurosecretory neurones with intravenous injection of the retrograde tracer, fluoro-gold, and recorded from fluoro-gold-positive and negative PVN parvocellular neurones in hypothalamic slices. Non-neurosecretory parvocellular neurones generated a low-threshold spike (LTS) and robust T-type Ca2+ current, whereas neurosecretory neurones showed no LTS and a small T-current.

View Article and Find Full Text PDF