Microbial pathogens have developed resistance mechanisms to almost every antibiotic available. There is a need to synthesize or screen new natural compounds to combat the development of drug-resistant pathogens. One of the commonly used methods to evaluate the antimicrobial activity of two or more antibiotics involves a checkerboard assay, which is cumbersome, time-consuming, and expensive.
View Article and Find Full Text PDFBackground: The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts.
Results: We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs.
γ-butyrolactone and related signalling systems are found in and other actinobacteria where they control the production of secondary or specialized metabolites such as antibiotics. Genetic manipulation of these regulatory systems therefore leads to changes in the secondary metabolite profile of a strain and has been used to activate previously silent secondary metabolite gene clusters. However, there is no easy way to assess the presence of γ-butyrolactone-like systems in strains without whole-genome sequencing.
View Article and Find Full Text PDFObjective: To validate the PIM3 score in Brazilian PICUs and compare its performance with the PIM2.
Methods: Observational, retrospective, multicenter study, including patients younger than 16 years old admitted consecutively from October 2013 to September 2019. We assessed the Standardized Mortality Ratio (SMR), the discrimination capability (using the area under the receiver operating characteristic curve - AUROC), and the calibration.
Advances in DNA sequencing technologies have drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Important ecological interactions being performed by microbes can be investigated by analyzing the extracellular protein fraction.
View Article and Find Full Text PDF