Paper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may leverage on the most recent advances in materials science and data processing. In particular, we target an amplifiable DNA rather than a protein analyte, and we replace gold nanospheres with anisotropic nanorods, which are intrinsically brighter by a factor of ~ 10, and multiplexable.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2020
The systemic delivery of composite nanoparticles remains an outstanding challenge in cancer nanomedicine, and the principal reason is a complex interplay of biological barriers. In this regard, adaptive cell transfer may represent an alternative solution to circumvent these barriers down to the tumor microenvironment. Here, tumor-tropic macrophages are proposed as a tool to draw and vehiculate modular nanoparticles integrating magnetic and plasmonic components.
View Article and Find Full Text PDFThe present work reports the application of RF-magnetron sputtering technique to realize CsPbBr 3 70 nm thick films on glass substrate by means of a one-step procedure. The obtained films show highly uniform surface morphology and homogeneous thickness as evidenced by AFM and SEM investigations. XRD measurements demonstrate the presence of two phases: a dominant orthorhombic CsPbBr 3 and a subordinate CsPb 2 Br 5 .
View Article and Find Full Text PDFThe rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue.
View Article and Find Full Text PDFTherapeutic and diagnostic methods based on photomechanical effects are attracting much current attention in contexts as oncology, cardiology and vascular surgery, for such applications as photoacoustic imaging or microsurgery. Their underlying mechanism is the generation of ultrasound or cavitation from the interaction of short optical pulses with endogenous dyes or targeted contrast agents. Among the latter, gold nanorods are outstanding candidates, but their use has mainly been reported for photoacoustic imaging and photothermal treatments.
View Article and Find Full Text PDF